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Introduction 

Material system: semi-
crystalline polymer

Experimental procedure: X-Ray Scattering
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DataSet

SAXS (960x960)

WAXS (960x1920) 

3 bivariate distributions (molecular composition)
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Project definition 

P S P

3 process 
parameters 

13 dimensional 

parameters 
3 mechanical properties

3 bivariate data set 
(5200x3 matrix)

Structure-Property 
Predictive model 

Process-structure 
Predictive model 

Phase recovery challenge
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Structure-Property Predictive Models 

S P

13 dimensional 

parameters 
3 mechanical properties

Structure-Property 
Predictive model 

- 1D SAXS data (dac, lamellar width, tilt angle…)

Dimension and orientation parameters 

- 1D WAXS data (crystallinity, crystalline 
orientation, amorphous chain orientation …)  

Puncture resistance (dart drop test)

Tear resistance (Elmendorf tear test)
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Structure-Property Predictive Models  

13 structure  
variables 

13 structure  
variables 

Linear model
R-squared: 0.79
Loocv RMPE: 0.496
MAPE: 20% 

4 variables

13 structure  
variables 

• Property to predict: puncture resistance (dartdrop)

• Predictors: structure parameters

PC1,PC2,PC3,PC4,PC5

Linear model
R-squared: 0.965
Loocv RMPE: 0.1237
MAPE: 30% 

Degree 2 polynomial 
model
R-squared: 0.901
Loocv RMPE: 0.208
MAPE: 51% 

Linear model
R-squared: 0.885
Loocv RMPE: 0.148 
MAPE: 37% 

INPUTS DATA REDUCTION REGRESSION: PREDICTIVE MODELS

98%

Stepwise 
regression

PCA
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Loocv RMPE: Root Square Percentage Error
MAPE: Mean Absolute Percentage Error

loocv

loocv

loocv

loocv



P S

3 process 
thickness
Crystallinity
MDRatio

13 dimensional 

parameters 

3 bivariate data set 
(5200x3 matrix)

- 1D SAXS data (dac, lamellar width, tilt angle…)

Dimension and orientation parameters 

- 1D WAXS data (crystallinity, crystalline 
orientation, amorphous chain orientation …)  

Process-Structure Predictive Models

3 bivariate 
distributions 
vectors 
(3x5200)

1 Component 
(96% of the 
variance)
PC1MolComp

PCA
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13 structure  
variables 

13 structure  
variables 

Linear model
R-squared: 0.98
Loocv RMPE: 0.0022
MAPE: 1.41% 

3 variables

13 structure  
variables 

PC1,PC2,PC3,PC4,PC5

Linear model
R-squared:  0.930
Loocv RMPE: 0.0062
MAPE: 1.07% 

Linear model
R-squared: 0.955
Loocv RMPE: 0.0037
MAPE: 1.04% 

INPUTS DATA REDUCTION REGRESSION: PREDICTIVE MODELS

Stepwise 
regression

PCA

Process-Structure Predictive Models
Process to predict: molecular composition reduced to  1 component  

Degree 2 polynomial 
model
R-squared: 0.9692
Loocv RMPE: 0.0015
MAPE: 0.34% 
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Loocv RMPE: Root Square Percentage Error
MAPE: Mean Absolute Percentage Error

loocv

loocv

loocv

loocv



PSP linkage?
Mechanical Property ~ Process 
parameters (Density, Thickness, 
PC1MolComp)

Mechanical Property~ Process (molecular 
comp)+Structure(PC1,2,3,4,5)

100000% 
error??

Almost the same results 
as the Structure-Property 
linkage

Good  Process-Property linkage
Not accurate Structure-Property linkage 
Impossible linkage between Process and Property
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Initial Approach

SAXS Images

Fourier Space
960 x 960 Uint16 
intensity maps (0-
65535)

Characteristic 
Equation

Recovered 2-pt 
Statistics

Phase Recovery

Recover 
Microstructure

Cleaned SAXS 
Images

Fourier Space
400 x 400 Uint16 intensity maps
Beam Stop Corrections

Real Space
Based off Normalizing by
an invariant of the material system
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Database Approach

SAXS Images

Fourier Space
960 x 960 Uint16 
intensity maps (0-
65535)

Simulated Micro 
structures

Real Space
.mat files (0s and 1s)
Control over various 
parameters 

Cleaned 
Experimental Data

Simulated Scattered 
Images

Mixed Simulated 
Scatter Images

PCA Mixed Images

Parameters of Closest 
Neighboring Simulated 

Microstructures

400x400 Uint16 
intensity maps, BS 
removed

Fourier Space
Autocorrelation of electron 
densities

Half of Autocorrelation of 
Simulated Scatter images,

Available, symmetric half 
of Experimental image

Observed clustering and 
use PCA as a directional 
guide 

Increase Simulated 
microstructures 
within clustering 
region

PC1

P
C

2

PC1’

P
C

2
’

First Pass

Second Pass
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Exploratory PCA

• PCA
• Goal: Establish feasibility to make matches for 

microstructure in fourier space
• Data

• Autocorrelation in Fourier Space
• 12 Experimental images (reduced to 400 by 400 

pixels)
• 180 simulated images (400 by 400 pixels)
• Vf, Particle Height, Particle Width set for 

segmented images
• Gaussian fields than applied to simulate 

non-eigen microstructures
• PCA Figures

• Beam Stop On
• Beam Stop Off
• Parameters that were controlled are color coded

11Data Used for 
Comparison 14



Beam Stop
included

Beam Stop
Not included

• Observe if clustering occurs even if information at beamstop is removed

Exploratory PCA Results
Vf Colorcoded Size Colorcoded
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Observing effects of the Beam Stop

• Results suggest that large amount of variance between microstructures 
where beam stop is located (lose a lot of  unique information)

• However, our PCA results stills show clustering of the microstructures in 
accordance with the parameters we have chosen, suggesting this a 
viable method to trace back to microstructure features
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Final steps of forward problem

• Problem 
• Way to normalize images to match experimental 

images
• Possible solution: Set range of electron density

• Find possible electron density range (in arbitrary 
measurement units)

• Or convert micrographs to absolute intensity scale

• Use bounds of electron density from 
literature/extracted from experiments
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Conclusions and perspective

• Dataset too reduced to generate accurate PSP linkages.

• Possible to use the complete SAXS and WAXS data for the PSP linkage 
once the normalization problem is solved.

• Built method to develop forward problem in recovery 
• Clustering suggest that this method could be used to narrow  down 

microstructure  parameters.

• Identified major issues with recovery 

• Direct approach for recovery very difficult.
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Appendix Equations

• Scatter Equations

2

k kI A

iks

k sA e ds  

2

iks

k s

V

I e ds  

*

k k kI A A

  '

' 'iks iks

k s sI e ds e ds    's s r 

  ikr

k s s rI ds e dr  

  

 k s s rI ds    
r s s rf ds    

1( )k r kI f F   

s s   

r s s rf ds   

( )( )r s s rf ds      

2

r s s r s s rf ds ds ds ds             

2ikr ikr ikr

k r rI f e dr f e dr V e dr        
2

,  refers to scattering of the sample as a whole if there were uniform density, 

since at k=0 the intensity is swamped by the beam intensity and experimentally not 

measured this term is ignored if 
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Understanding the intensity maps

Simulated Scatter 
Plot (similar to 
received 
experimental data)

2-pt stats of 
simulated 
microstructure 
(real space)

Microstructure

Autocorrelation 
in Fourier Space
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Early Trials

• Initial Approach proved difficult
• Handling of information within beam stop non-trivial
• No reference point or measurement to scale with to get to absolute intensity
• Manipulating data in Fourier space not straight forward

• Fourier representation means amplitudes are independent
• Recovery of phase information ultimately needed as well as recovery of microstructure
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